w=100;
h=100;
wh=w*h;
banyak=552; %ada 552 huruf yang hendak di latih
dataLatih=[];
for i=1:banyak
AL=['datalatih/' num2str(i) '.PNG'];
I=imread(AL);
R=double(genData(I));
RN=imresize(R,[w,h]);
S=reshape(RN,[1,wh]);
dataLatih(i,:)=S;
dataTarget(i)=i;
end
% dataLatih 552x10000 44160000 double
% dataTarget 1x552 4416 double
save dataLatih.mat dataLatih;
save dataTarget.mat dataTarget;
for i=1:size(dataLatih,1)
dataUji=dataLatih(i,:);
r=multisvmNew(dataLatih,dataTarget,double(dataUji))
end
hasilnya adalah harus sama urutannnya dengan data Target
Selanjutnya kita akan menguji kalimat :
artinya langkahnya adalah sbb:
1.segmentasi
2.mencocokan setiap karakter yang telah terbentuk ke sistem SVM
3 manganalsia hasilnya...
sebagaia berikut kodenya:
function btnProcess_Callback(hObject, eventdata, handles)
ff=get(handles.axes1,'Userdata');
f=imresize(ff,[400 NaN]);
g=rgb2gray(f);
g=medfilt2(g,[3 3]);
set(handles.figure1,'CurrentAxes',handles.axes4);
imshow(g);
set(handles.axes4,'Userdata',g);
%**********************************
conc=strel('disk',1);
gi=imdilate(g,conc);
ge=imerode(g,conc); %%%% morphological image processing
gdiff=imsubtract(gi,ge);
gdiff=mat2gray(gdiff);
gdiff=conv2(gdiff,[1 1;1 1]);
gdiff=imadjust(gdiff,[0.5 0.7],[0 1],.1);
B=logical(gdiff);
[a1 b1]=size(B);
set(handles.figure1,'CurrentAxes',handles.axes5);
imshow(B);
set(handles.axes5,'Userdata',B);
er=imerode(B,strel('line',100,0));
set(handles.figure1,'CurrentAxes',handles.axes6);
imshow(er);
set(handles.axes6,'Userdata',er);
out1=imsubtract(B,er);
F=imfill(out1,'holes'); %%%filling the object
H=bwmorph(F,'thin',1);
H=imerode(H,strel('line',3,90));
set(handles.figure1,'CurrentAxes',handles.axes7);
imshow(H);
set(handles.axes7,'Userdata',H);
%%
final=bwareaopen(H,floor((a1/15)*(b1/15)));
final(1:floor(.9*a1),1:2)=1;
final(a1:-1:(a1-20),b1:-1:(b1-2))=1;
set(handles.figure1,'CurrentAxes',handles.axes8);
imshow(final);
set(handles.axes7,'Userdata',final);
w1=get(handles.edw,'String');
h1=get(handles.edh,'String');
w=str2num(w1);
h=str2num(h1);
wh=w*h;
load dataLatih.mat;
load dataTarget.mat;
% dataLatih 6x40000 1920000 double
% dataTarget 1x6 48 double
% dataUji 1x40000 40000 logical
Iprops=regionprops(final,'BoundingBox','Image');
hold on
mm=1;
for n=1:size(Iprops,1)
PPN=Iprops(n);
IM=PPN.Image;
IB=PPN.BoundingBox;
rectangle('Position',PPN.BoundingBox,'EdgeColor','g','LineWidth',2);
wv=size(IM,1);
hv=size(IM,2);
whv=wv*hv;
if whv>20000
%figure
mm
Citra=imresize(IM,[w,h]);
ICitra=imcomplement(Citra);
ALB=['datacapture/H' num2str(mm) '.png'];
ALW=['datacapture/H' num2str(mm) '.png'];
imwrite(Citra,ALB);
imwrite(ICitra,ALW);
dataUji=reshape(ICitra,[1,wh]);
% whos dataLatih
% whos dataTarget
% whos dataUji
r=multisvmNew(dataLatih,dataTarget,double(dataUji))
mm=mm+1;
end
end
hold off
Akan menghasilkan 3 gambar hasil segmentasi sbb:
Selanjutnya diinvers gambar tersebuat agar sesuai dengan pola datalatih:
ICitra=imcomplement(Citra);
adapun engine svm yang bs digunakan adalah sbb:
function [itrfin] = multisvmNew( T,C,test )
%MULTISVM(3.0) classifies the class of given training vector according to the
% given group and gives us result that which class it belongs.
% We have also to input the testing matrix
%Inputs: T=Training Matrix, C=Group, test=Testing matrix
%Outputs: itrfin=Resultant class(Group,USE ROW VECTOR MATRIX) to which tst set belongs
%----------------------------------------------------------------------%
% IMPORTANT: DON'T USE THIS PROGRAM FOR CLASS LESS THAN 3, %
% OTHERWISE USE svmtrain,svmclassify DIRECTLY or %
% add an else condition also for that case in this program. %
% Modify required data to use Kernel Functions and Plot also%
%----------------------------------------------------------------------%
% Date:11-08-2011(DD-MM-YYYY) %
% This function for multiclass Support Vector Machine is written by
% ANAND MISHRA (Machine Vision Lab. CEERI, Pilani, India)
% and this is free to use. email: anand.mishra2k88@gmail.com
% Updated version 2.0 Date:14-10-2011(DD-MM-YYYY)
% Updated version 3.0 Date:04-04-2012(DD-MM-YYYY)
itrind=size(test,1);
itrfin=[];
Cb=C;
Tb=T;
for tempind=1:itrind
tst=test(tempind,:);
C=Cb;
T=Tb;
u=unique(C);
N=length(u);
c4=[];
c3=[];
j=1;
k=1;
if(N>2)
itr=1;
classes=0;
cond=max(C)-min(C);
while((classes~=1)&&(itr<=length(u))&& size(C,2)>1 && cond>0)
%This while loop is the multiclass SVM Trick
c1=(C==u(itr));
newClass=c1;
svmStruct = svmtrain(T,newClass,'kernel_function','rbf'); % I am using rbf kernel function, you must change it also
classes = svmclassify(svmStruct,tst);
% This is the loop for Reduction of Training Set
for i=1:size(newClass,2)
if newClass(1,i)==0;
c3(k,:)=T(i,:);
k=k+1;
end
end
T=c3;
c3=[];
k=1;
% This is the loop for reduction of group
for i=1:size(newClass,2)
if newClass(1,i)==0;
c4(1,j)=C(1,i);
j=j+1;
end
end
C=c4;
c4=[];
j=1;
cond=max(C)-min(C); % Condition for avoiding group
%to contain similar type of values
%and the reduce them to process
% This condition can select the particular value of iteration
% base on classes
if classes~=1
itr=itr+1;
end
end
end
valt=Cb==u(itr); % This logic is used to allow classification
val=Cb(valt==1); % of multiple rows testing matrix
val=unique(val);
itrfin(tempind,:)=val;
end
end
% Give more suggestions for improving the program.
Tambahan Button:
function btnBrowse_Callback(hObject, eventdata, handles)
[handles.namafile,handles.direktori]=uigetfile({'*.png;*.jpg','file citra(*.bmp,*.jpg)';'*.bmp','file bitmap(*.bmp)';'*.jpg','file jpg(*.jpg)';'*.*','semua file(*.*)'},'buka file citra host/asli');
I=imread(fullfile(handles.direktori,handles.namafile));
if size(handles.namafile,2)>0
set(handles.btnReset,'Enable','on');
set(handles.btnProcess,'Enable','on');
set(handles.figure1,'CurrentAxes',handles.axes1);
set(imshow(I));
set(handles.axes1,'Userdata',I);
mywidth=int2str(size(I,1));
myheight=int2str(size(I,2));
mysize=(['size image:',mywidth,'x',myheight]);
mypath=(['path image:',handles.direktori,handles.namafile]);
[infogambar]=([mypath ' Resolusi:',mysize]);
set(handles.edPath,'string',infogambar);
else
set(handles.edPath,'string','');
set(handles.edProses,'string','');
set(handles.edResult,'string','00 0000 00');
return;
end
% --- Executes on button press in btnReset.
function btnReset_Callback(hObject, eventdata, handles)
mau=questdlg(['Reset ' get(handles.figure1,'Name')''],['Anda ingin Reset Aplikasi ini?'],'Ya','Tidak','Ya');
if strcmp(mau,'Tidak')
return;
else
arrayfun(@cla,findall(0,'type','axes'))
set(handles.edPath,'string','');
set(handles.edProses,'string','');
set(handles.edResult,'string','00 0000 00');
axes(handles.axes1);cla;
axes(handles.axes4);cla;
set(handles.btnReset,'Enable','off');%on
set(handles.btnProcess,'Enable','off');%on
hm = msgbox('Reset','Reset Sukses','help');
end
% --- Executes on button press in btnClose.
function btnClose_Callback(hObject, eventdata, handles)
mau=questdlg(['Keluar ' get(handles.figure1,'Name')''],['Keluar ' get(handles.figure1,'Name')''],'Ya','Tidak','Ya');
if strcmp(mau,'Tidak')
return;
end
delete(handles.figure1);%close;
% --- Executes on button press in btnGenerate.
function btnGenerate_Callback(hObject, eventdata, handles)
w1=get(handles.edw,'String');
h1=get(handles.edh,'String');
w=str2num(w1);
h=str2num(h1);
wh=w*h;
banyak=552;
dataLatih=[];
for i=1:banyak
AL=['datalatih/' num2str(i) '.PNG'];
I=imread(AL);
R=double(genData(I));
RN=imresize(R,[w,h]);
S=reshape(RN,[1,wh]);
dataLatih(i,:)=S;
dataTarget(i)=i;
end
whos dataLatih
save dataLatih.mat dataLatih;
save dataTarget.mat dataTarget;
msgbox('Generate Sukses','Sukses',help);
Selamat Mentjoba....
Literatur Pengujian Black Box
w=100;
h=100;
wh=w*h;
banyak=552;
dataLatih=[];
for i=1:banyak
AL=['datalatih/' num2str(i) '.PNG'];
I=imread(AL);
R=double(genData(I));
RN=imresize(R,[w,h]);
S=reshape(RN,[1,wh]);
dataLatih(i,:)=S;
dataTarget(i)=i;
end
save dataLatih.mat dataLatih;
save dataTarget.mat dataTarget;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load dataLatih.mat
load dataTarget.mat
for i=1:1
dataUji=dataLatih(58,:);
r=multisvmNew(dataLatih,dataTarget',double(dataUji))
%r=multisvm(dataLatih(50:100,:),dataTarget(:,50:100),double(dataLatih(1
,:)))
end
%%%%%%%%%%%%%%%%%%%%%%
AL=['datacapture/H1.png'];
I=imread(AL);
R=double(genData(I));
RN=imresize(R,[w,h]);
S=reshape(RN,[1,wh]);
dataUji=S;
r=multisvm(dataLatih(50:100,:),dataTarget(:,50:100),double(dataUji))
r=multisvm(dataLatih(50:100,:),dataTarget(:,50:100),double(dataLatih(70,:)))
TrainingSet=[ 1 10;2 20;3 30;4 40;5 50;6 66;3 30;4.1 42];
TestSet=[3 34; 1 14; 2.2 25; 6.2 63];
GroupTrain=[1;1;2;2;3;3;2;2];
results = multisvm(TrainingSet, GroupTrain, TestSet);
disp('multi class problem');
disp(results);
% GroupTrain 8x1 64 double
% TestSet 4x2 64 double
% TrainingSet 8x2 128 double
% GroupTrain 8x1 64 double
% TestSet 1x200 64 double
% TrainingSet 8x200 128 double
M=5;
TrainingSet=dataLatih(1:552,:);
TestSet=double(dataLatih(M,:));
GroupTrain=dataTarget(:,1:552)';
results = multisvmNew(TrainingSet, GroupTrain, TestSet);
disp('multi class problem');
disp(results);
% GroupTrain 1b, banyak C
% TestSet 1b, cbebas
% TrainingSet banyak b , cbebas
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Kasus Just two group
%figure;
% Xnew 2x2 32 double
% group 100x1 13100 cell
% xdata 100x2 1600 double
% two group
xdata=dataLatih(50:100,:)';
group=dataTarget(:,50:100)';
Xnew=double(dataLatih(5,:))';
svmStruct = svmtrain(xdata,group,'ShowPlot',true);
Xnew = [5 2; 4 1.5];
species = svmclassify(svmStruct,Xnew,'ShowPlot',true)
%%%http://www.codeforge.com/read/11659212/oaasvm.m__html
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load fisheriris
xdata = meas(51:end,3:4);
group = species(51:end);
%figure;
svmStruct = svmtrain(xdata,group,'ShowPlot',true);
Xnew = [5 2; 4 1.5];
species = svmclassify(svmStruct,Xnew,'ShowPlot',true)
% hold on;
% plot(Xnew(:,1),Xnew(:,2),'ro','MarkerSize',12);
% hold off
w=100;
h=100;
wh=w*h;
banyak=552;
dataLatih=[];
for i=1:banyak
AL=['datalatih/' num2str(i) '.PNG'];
I=imread(AL);
R=double(genData(I));
RN=imresize(R,[w,h]);
S=reshape(RN,[1,wh]);
dataLatih(i,:)=S;
dataTarget(i)=i;
end
save dataLatih.mat dataLatih;
save dataTarget.mat dataTarget;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load dataLatih.mat
load dataTarget.mat
for i=1:1
dataUji=dataLatih(58,:);
r=multisvmNew(dataLatih,dataTarget',double(dataUji))
%r=multisvm(dataLatih(50:100,:),dataTarget(:,50:100),double(dataLatih(1
,:)))
end
%%%%%%%%%%%%%%%%%%%%%%
AL=['datacapture/H1.png'];
I=imread(AL);
R=double(genData(I));
RN=imresize(R,[w,h]);
S=reshape(RN,[1,wh]);
dataUji=S;
r=multisvm(dataLatih(50:100,:),dataTarget(:,50:100),double(dataUji))
r=multisvm(dataLatih(50:100,:),dataTarget(:,50:100),double(dataLatih(70,:)))
TrainingSet=[ 1 10;2 20;3 30;4 40;5 50;6 66;3 30;4.1 42];
TestSet=[3 34; 1 14; 2.2 25; 6.2 63];
GroupTrain=[1;1;2;2;3;3;2;2];
results = multisvm(TrainingSet, GroupTrain, TestSet);
disp('multi class problem');
disp(results);
% GroupTrain 8x1 64 double
% TestSet 4x2 64 double
% TrainingSet 8x2 128 double
% GroupTrain 8x1 64 double
% TestSet 1x200 64 double
% TrainingSet 8x200 128 double
M=5;
TrainingSet=dataLatih(1:552,:);
TestSet=double(dataLatih(M,:));
GroupTrain=dataTarget(:,1:552)';
results = multisvmNew(TrainingSet, GroupTrain, TestSet);
disp('multi class problem');
disp(results);
% GroupTrain 1b, banyak C
% TestSet 1b, cbebas
% TrainingSet banyak b , cbebas
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Kasus Just two group
%figure;
% Xnew 2x2 32 double
% group 100x1 13100 cell
% xdata 100x2 1600 double
% two group
xdata=dataLatih(50:100,:)';
group=dataTarget(:,50:100)';
Xnew=double(dataLatih(5,:))';
svmStruct = svmtrain(xdata,group,'ShowPlot',true);
Xnew = [5 2; 4 1.5];
species = svmclassify(svmStruct,Xnew,'ShowPlot',true)
%%%http://www.codeforge.com/read/11659212/oaasvm.m__html
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load fisheriris
xdata = meas(51:end,3:4);
group = species(51:end);
%figure;
svmStruct = svmtrain(xdata,group,'ShowPlot',true);
Xnew = [5 2; 4 1.5];
species = svmclassify(svmStruct,Xnew,'ShowPlot',true)
% hold on;
% plot(Xnew(:,1),Xnew(:,2),'ro','MarkerSize',12);
% hold off