XY =
82 66
91 3
12 85
92 94
63 68
9 76
28 75
55 39
96 66
97 17
15 71
98 3
96 27
49 4
80 9
14 83
42 70
92 32
80 95
96 3
Sistem akan auto move mencari jarak terdekat untuk melalui semua titik yang ada..
dan ini adalah grafik kecerdasannya...
Iteration 1: Best Cost = 650.2307
Iteration 2: Best Cost = 540.892
Iteration 3: Best Cost = 531.4992
Iteration 4: Best Cost = 483.6564
Iteration 5: Best Cost = 483.6564
Iteration 6: Best Cost = 483.6564
Iteration 7: Best Cost = 483.6564
Iteration 8: Best Cost = 451.971
Iteration 9: Best Cost = 451.9041
Iteration 10: Best Cost = 439.1259
Iteration 11: Best Cost = 439.1259
Iteration 12: Best Cost = 424.478
Iteration 13: Best Cost = 424.478
Iteration 14: Best Cost = 410.1005
Iteration 15: Best Cost = 410.1005
Iteration 16: Best Cost = 410.1005
Iteration 17: Best Cost = 410.1005
Iteration 18: Best Cost = 410.1005
Iteration 19: Best Cost = 410.1005
Iteration 20: Best Cost = 410.1005
Code Aplikasi.m:
model=CreateModel();
CostFunction=@(tour) TourLength(tour,model);
nVar=model.n;
MaxIt=20; % Maximum Number of Iterations
nAnt=40; % Number of Ants (Population Size)
Q=1;
tau0=10*Q/(nVar*mean(model.D(:))); % Initial Phromone
alpha=1; % Phromone Exponential Weight
beta=1; % Heuristic Exponential Weight
rho=0.05; % Evaporation Rate
eta=1./model.D; % Heuristic Information Matrix
tau=tau0*ones(nVar,nVar); % Phromone Matrix
BestCost=zeros(MaxIt,1); % Array to Hold Best Cost Values
empty_ant.Tour=[];empty_ant.Cost=[];
ant=repmat(empty_ant,nAnt,1);
BestSol.Cost=inf;
for it=1:MaxIt
for k=1:nAnt
ant(k).Tour=randi([1 nVar]);
for l=2:nVar
i=ant(k).Tour(end);
P=tau(i,:).^alpha.*eta(i,:).^beta;
P(ant(k).Tour)=0;
P=P/sum(P);
j=RouletteWheelSelection(P);
ant(k).Tour=[ant(k).Tour j];
end
ant(k).Cost=CostFunction(ant(k).Tour);
if ant(k).Cost<BestSol.Cost
BestSol=ant(k);
end
end
% Update Phromones
for k=1:nAnt
tour=ant(k).Tour;
tour=[tour tour(1)];
for l=1:nVar
i=tour(l);
j=tour(l+1);
tau(i,j)=tau(i,j)+Q/ant(k).Cost;
end
end
tau=(1-rho)*tau;
% Store Best Cost
BestCost(it)=BestSol.Cost;
% Show Iteration Information
disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);
% Plot Solution
figure(1);
PlotSolution(BestSol.Tour,model);
pause(2);%0.01
end
%% Results
figure;
plot(BestCost,'LineWidth',2);
xlabel('Iteration');
ylabel('Best Cost');
grid on;
++++++++++++++++++++++++
function model=CreateModel()
x=[82 91 12 92 63 9 28 55 96 97 15 98 96 49 80 14 42 92 80 96];
y=[66 3 85 94 68 76 75 39 66 17 71 3 27 4 9 83 70 32 95 3];
n=numel(x);
D=zeros(n,n);
for i=1:n-1
for j=i+1:n
D(i,j)=sqrt((x(i)-x(j))^2+(y(i)-y(j))^2);
D(j,i)=D(i,j);
end
end
model.n=n;
model.x=x;
model.y=y;
model.D=D;
end
++++++++++++++++++++++++++++++++++++
function L=TourLength(tour,model)
n=numel(tour);
tour=[tour tour(1)];
L=0;
for i=1:n
L=L+model.D(tour(i),tour(i+1));
end
end
++++++++++++++++++++++++++++++++++++++
function j=RouletteWheelSelection(P)
r=rand;
C=cumsum(P);
j=find(r<=C,1,'first');
end
++++++++++++++++++++++++++++++++++++++
function PlotSolution(tour,model)
tour=[tour tour(1)];
plot(model.x(tour),model.y(tour),'k-o',...
'MarkerSize',10,...
'MarkerFaceColor','y',...
'LineWidth',1.5);
xlabel('x');
ylabel('y');
axis equal;
grid on;
alpha = 0.1;
xmin = min(model.x);
xmax = max(model.x);
dx = xmax - xmin;
xmin = floor((xmin - alpha*dx)/10)*10;
xmax = ceil((xmax + alpha*dx)/10)*10;
xlim([xmin xmax]);
ymin = min(model.y);
ymax = max(model.y);
dy = ymax - ymin;
ymin = floor((ymin - alpha*dy)/10)*10;
ymax = ceil((ymax + alpha*dy)/10)*10;
ylim([ymin ymax]);
end
++++++++++++++++++++++++++++++++++++++++
GB Phromone
+++++++++++++++++++++++++++++++++++++++++++++++++++