global com;
arduino = serial(com,'BaudRate',9600);
try
fopen(arduino);
catch
instrreset;
fopen(arduino);
end
baca=fscanf(arduino, '%s');%1x7 14 char
fclose(arduino);
cell = strsplit(baca,'#');
sensor=cell2mat(cell(1,1));
val=cell2mat(cell(1,2));
set(handles.txt12,'String',sensor);
clear all
clc
serialPort=serial('COM4','BaudRate',9600);
warning('off','MATLAB:serial:fscanf:unsuccessfulRead');
fopen(serialPort);
volt=[10,10,10,101,10,10,10,10];
%Voltages are mapped from 0-10 to 0-100000
for i=1:length(volt)
voltmapped(i)=map2(volt(i),0,10,0,100000);
end
display('Press any button to continue.');
pause
for i=1:length(voltmapped)
fprintf(serialPort,'%d',voltmapped(i));
end
fclose(serialPort);
Selasa, 14 Februari 2017
Kamis, 09 Februari 2017
Referensi Montecarlo
link download :
https://www.youtube.com/watch?v=Xr4a6Dw6qcc
simple code:
% Monte Carlo computation of pi.
n = input(' Enter n: ');
count = 0;
% Generate random points in the square [-1,1]X[-1,1].
% The fraction of these that lie in the unit disk
% x^2+y^2 <= 1 will be approximately pi/4.
% Think of this as taking the average of N independent
% identically distributed random variables X_i, where
% X_i = 1 if point i lies in the disk, 0 otherwise.
Eofxsq = 0; % Compute expected value of X_i^2 to use in error estimate.
for i=1:n,
x = 2*rand-1; y = 2*rand-1;
if x^2 + y^2 <= 1, count = count + 1; Eofxsq = Eofxsq + 1^2; end;
end;
pi_approx = 4*(count/n),
err = pi - pi_approx,
Eofxsq = Eofxsq/n;
varx = Eofxsq - (count/n)^2; % Variance in individual approximations to pi/4.
sigx = sqrt(varx); % Std dev in individual approximations to pi/4.
sigma = 4*sigx/sqrt(n), % Std dev in total approximation to pi.
fprintf('Error should be less than %f, 68.3 percent of the time\n',sigma)
fprintf('Error should be less than %f, 95 percent of the time\n',2*sigma)
Selamat Mencoba.....Senin, 06 Februari 2017
Matlab Code SImple LVQ / SOM
function scan(img)files = dir('*.jpg');hist = [];for n = 1 : length(files) filename = files(n).name; file = imread(filename); hist = [hist, imhist(rgb2gray(imresize(file,[ 50 50])))]; %#okendsom = selforgmap([10 10]);som = train(som, hist);t = som(hist); %extract class datanet = lvqnet(10);net = train(net, hist, t);like(img, hist, files, net)end
====================
function like(im, hist, files , net)
hs = imhist(rgb2gray(imresize(im,[50 50])));
cls = vec2ind(net(hs));
[~, n] = size(hist);
for i = 1 : n
if(cls == vec2ind(net(hist(:, i))))
figure('name', files(i).name);
imshow(imresize(imread(files(i).name), [100 100]))
end
end
end
Reff:
Langganan:
Komentar (Atom)
