link download :
https://www.youtube.com/watch?v=Xr4a6Dw6qcc
simple code:
% Monte Carlo computation of pi. n = input(' Enter n: '); count = 0; % Generate random points in the square [-1,1]X[-1,1]. % The fraction of these that lie in the unit disk % x^2+y^2 <= 1 will be approximately pi/4. % Think of this as taking the average of N independent % identically distributed random variables X_i, where % X_i = 1 if point i lies in the disk, 0 otherwise. Eofxsq = 0; % Compute expected value of X_i^2 to use in error estimate. for i=1:n, x = 2*rand-1; y = 2*rand-1; if x^2 + y^2 <= 1, count = count + 1; Eofxsq = Eofxsq + 1^2; end; end; pi_approx = 4*(count/n), err = pi - pi_approx, Eofxsq = Eofxsq/n; varx = Eofxsq - (count/n)^2; % Variance in individual approximations to pi/4. sigx = sqrt(varx); % Std dev in individual approximations to pi/4. sigma = 4*sigx/sqrt(n), % Std dev in total approximation to pi. fprintf('Error should be less than %f, 68.3 percent of the time\n',sigma) fprintf('Error should be less than %f, 95 percent of the time\n',2*sigma)Selamat Mencoba.....
Tidak ada komentar:
Posting Komentar