Minggu, 02 Juli 2023

Matlab Outlier Simulasi

 



 
function btnBrowse_Callback(hObject, eventdata, handles) 

[namafile,direktori]=uigetfile({'*.xls;*.xlsx','file excel(*.xls,*.xlsx)';'*.*','semua file(*.*)'},'buka file excell');
path=fullfile(direktori,namafile);
[A0,B,C]=xlsread(path); 
global judul;
set(handles.edt1,'String',path);
bar=size(C,1);%151
col=size(C,2);
    data=C(2:bar,1:col);
  A=C(2:bar,3:col);
  A=cell2mat(A);
  minX1=min(A(:,1));
  maxX1=max(A(:,1));
  minX2=min(A(:,2));
  maxX2=max(A(:,2));
  minX3=min(A(:,3));
  maxX3=max(A(:,3));
  minX4=min(A(:,4));
  maxX4=max(A(:,4));
  minX5=min(A(:,5));
  maxX5=max(A(:,5));
  minX6=min(A(:,6));
  maxX6=max(A(:,6));
  minX7=min(A(:,7));
  maxX7=max(A(:,7));
  sel1=maxX1-minX1;
  sel2=maxX2-minX2;
  sel3=maxX3-minX3;
  sel4=maxX4-minX4;
  sel5=maxX5-minX5;
  sel6=maxX6-minX6;
  se17=maxX7-minX7;
  
  
  nom=linspace(1,bar-1,bar-1);
    set(handles.uitable1,'data',data,'ColumnName',judul,'RowName',nom);
    set(handles.uitable1,'Userdata',data);
            var1=['Dimensi DataSet ' num2str(bar-1) ' x '  num2str(col)  ' BK'];
            set(handles.txt1,'String',var1);
  
  baris={'Min','Max','Sel'};
  judul2=judul(1,3:9);
  dataminmax=[minX1,minX2,minX3,minX4,minX5,minX6,minX7;
      maxX1,maxX2,maxX3,maxX4,maxX5,maxX6,maxX7;
      sel1,sel2,sel3,sel4,sel5,sel6,se17
      ];
  
    set(handles.uitable2,'data',dataminmax,'ColumnName',judul2,'RowName',baris);
    set(handles.uitable2,'Userdata',dataminmax);
    save data.mat data;
    save dataminmax.mat dataminmax;
    

function btnClear_Callback(hObject, eventdata, handles)
 set(handles.edt1,'String','');
 set(handles.txt1,'String','Dimensi Tabel AxB');
 set(handles.edt1,'String','');
 set(handles.edt1,'String','');
 
set(handles.edit14,'String','');
set(handles.edit15,'String','');
set(handles.edit16,'String','');
set(handles.edCluster,'String','');
set(handles.edOut,'String','');
set(handles.edi1,'String','');
set(handles.edi2,'String','');
set(handles.edi3,'String','');
set(handles.edi4,'String','');
set(handles.edi5,'String','');
set(handles.edi6,'String','');
set(handles.edi7,'String','');
set(handles.edn1,'String','');
set(handles.edn2,'String','');
set(handles.edn3,'String','');
set(handles.edn4,'String','');
set(handles.edn5,'String','');
set(handles.edn6,'String','');
set(handles.edn7,'String','');

 set(handles.uitable1,'data',[],'ColumnName',[],'RowName',[]);
 set(handles.uitable1,'Userdata',[]); 
 set(handles.uitable2,'data',[],'ColumnName',[],'RowName',[]);
 set(handles.uitable2,'Userdata',[]); 
 set(handles.uitable3,'data',[],'ColumnName',[],'RowName',[]);
 set(handles.uitable3,'Userdata',[]); 
set(handles.uitable5,'data',[],'ColumnName',[],'RowName',[]);
set(handles.uitable5,'Userdata',[]); 

%axes(handles.axes2);
cla(handles.axes2,'reset');
cla(handles.axes3,'reset');


function btnNorm_Callback(hObject, eventdata, handles) 
% data=   get(handles.uitable1,'Userdata');
% dminmax= get(handles.uitable2,'Userdata');
load data.mat;
load dataminmax.mat;

minX1=dataminmax(1,1);
maxX1=dataminmax(2,1);
minX2=dataminmax(1,2);
maxX2=dataminmax(2,2);
minX3=dataminmax(1,3);
maxX3=dataminmax(2,3);
minX4=dataminmax(1,4);
maxX4=dataminmax(2,4);
minX5=dataminmax(1,5);
maxX5=dataminmax(2,5);
minX6=dataminmax(1,6);
maxX6=dataminmax(2,6);
minX7=dataminmax(1,7);
maxX7=dataminmax(2,7);

%norm={}; 
normalize=[];
dataAsli=data;%1754x9cell
bar=size(data,1);
col=size(data,2);
data=dataAsli(:,3:col);
 

for i=1:bar
    v1=(cell2mat(data(i,1))-minX1)/(maxX1-minX1);
    v2=(cell2mat(data(i,2))-minX2)/(maxX2-minX2);
    v3=(cell2mat(data(i,3))-minX3)/(maxX3-minX3);
    v4=(cell2mat(data(i,4))-minX4)/(maxX4-minX4);
    v5=(cell2mat(data(i,5))-minX5)/(maxX5-minX5);
    v6=(cell2mat(data(i,6))-minX6)/(maxX6-minX6);
    v7=(cell2mat(data(i,7))-minX7)/(maxX7-minX7);
    
    %gab=[{v1},{v2},{v3},{v4},{v5},{v6},{v7}];
    gab=[v1,v2,v3,v4,v5,v6,v7];
    normalize(i,:)=gab;
end
  nom=linspace(1,bar,bar);
  global judul;
  judul2=judul(1,3:9);
    set(handles.uitable3,'data',normalize,'ColumnName',judul2,'RowName',nom);
    set(handles.uitable3,'Userdata',normalize); 
    save normalize.mat normalize;
 

======

 
function uitable1_CellSelectionCallback(hObject, eventdata, handles)
try
data    = get(handles.uitable1, 'Data');
index   = eventdata.Indices; 

R= eventdata.Indices(1);
C= eventdata.Indices(2);
mdata=data(R,:);
D1=cell2mat(mdata(1));
D2=cell2mat(mdata(2));
D3=cell2mat(mdata(3));
D4=cell2mat(mdata(4));
D5=cell2mat(mdata(5));
D6=cell2mat(mdata(6));
D7=cell2mat(mdata(7));
D8=cell2mat(mdata(8));
D9=cell2mat(mdata(9));

load dataminmax.mat;

minX1=dataminmax(1,1);
maxX1=dataminmax(2,1);
minX2=dataminmax(1,2);
maxX2=dataminmax(2,2);
minX3=dataminmax(1,3);
maxX3=dataminmax(2,3);
minX4=dataminmax(1,4);
maxX4=dataminmax(2,4);
minX5=dataminmax(1,5);
maxX5=dataminmax(2,5);
minX6=dataminmax(1,6);
maxX6=dataminmax(2,6);
minX7=dataminmax(1,7);
maxX7=dataminmax(2,7);
 
v1=(D3-minX1)/(maxX1-minX1);
v2=(D4-minX2)/(maxX2-minX2);
v3=(D5-minX3)/(maxX3-minX3);
v4=(D6-minX4)/(maxX4-minX4);
v5=(D7-minX5)/(maxX5-minX5);
v6=(D8-minX6)/(maxX6-minX6);
v7=(D9-minX7)/(maxX7-minX7);

set(handles.edi1,'String',num2str(D3));
set(handles.edi2,'String',num2str(D4));
set(handles.edi3,'String',num2str(D5));
set(handles.edi4,'String',num2str(D6));
set(handles.edi5,'String',num2str(D7));
set(handles.edi6,'String',num2str(D8));
set(handles.edi7,'String',num2str(D9));

set(handles.edn1,'String',num2str(v1));
set(handles.edn2,'String',num2str(v2));
set(handles.edn3,'String',num2str(v3));
set(handles.edn4,'String',num2str(v4));
set(handles.edn5,'String',num2str(v5));
set(handles.edn6,'String',num2str(v6));
set(handles.edn7,'String',num2str(v7));

load data.mat;
 data_awal=data(:,3:9);
 data_awal = cell2mat(data_awal);
 max_data = max(data_awal);
 min_data = min(data_awal);
 
cntr_baru=get(handles.uitable5,'Userdata');
myori=[D3,D4,D5,D6,D7,D8,D9];
mydata=[v1,v2,v3,v4,v5,v6,v7];

Bclus=str2num(get(handles.edCluster,'String'));

r=0.5;
sigmascluster = (r .* (max_data - min_data)) / sqrt(8);
sb_temp = sigmascluster.^2;
sb = 2.*sb_temp;

%derajat keanggotaan tiap data pada tiap klaster
[n,m]=size(mydata);
hasil=[]; 
    for j = 1:m
        for k = 1:Bclus
            %hasil(j,k)=(((mydata(1,j)-cntr_baru(k,j)).^2)./sb(j)); 
            hasil(j,k)=(((myori(1,j)-cntr_baru(k,j)).^2)./sb(j)); 
        end
    end 
%whos hasil % 7x8
su = sum(hasil) ;%1x8
msu=min(su);
index=0;
for i =1: Bclus 
    if msu==su(1,i)
        index=i;
        break;
    end
end

set(handles.edOut,'String',num2str(index));

catch 
 disp('menunggu proses....');
end

 
function uitable5_CellSelectionCallback(hObject, eventdata, handles)
CA=handles.CA;
CN=handles.CN;

try
data    = get(handles.uitable5, 'Data');
index   = eventdata.Indices; 

R= eventdata.Indices(1);
C= eventdata.Indices(2);
mdata=data(R,:);
index=R;%cell2mat(mdata(8));
TA=CA{index};
psn=['List Data Asli Cluster ' num2str(index) ' (' num2str(size(TA,1)) ')'];
disp(psn);
disp(TA);

TN=CN{index};
psn=['List Data Normalisasi Cluster ' num2str(index) ' (' num2str(size(TN,1)) ')'];
disp(psn);
disp(TN);

catch
   disp('Menunggu Proses Data....'); 
end
guidata(hObject,handles);


###############


dataPie=[];
explode=[];
Labels=[];
for i = 1:G
    ind{i} = idx == i;
    C_norm{i}=N(idx==i,:); %menampilkan data normalisasi sesuai cluster
    C{i} = datareal(idx==i,:);  %menampilkan nama kelurahan sesuai clusternya
    CA{i} = data_awal(idx==i,:) ;
    C_stat{i} = stat(CA{i}); %menampilkan stat setiap cluster
    cSSE{i} = hitung_sse(C_norm,cntr,i);
    cMAE{i} = hitung_mae(C_norm,cntr,i);
    
    [b,c]=size(C{i});
    dataPie(1,i)=b;
    Ex=1;
    if i>3
        Ex=0;
    end
    explode(1,i)=Ex;
    Labels{i}=['C' num2str(i)];
    psn1=['Cluster ke ' num2str(i)];
    disp(psn1);
    psn2=['Banyak Data ' num2str(b) ' Item'];
    disp(psn2);
    disp('Data Statistik:');
    disp(C_stat{i});
    disp('Nilai SSE:');
    disp(cSSE{i});
    disp('Nilai MAE:');
    disp(cMAE{i});
    disp('--------------------------------');
end
axes(handles.axes2);
pie(dataPie,Labels); 

handles.CA= C;
handles.CN= C_norm;
handles.idx=idx;
guidata(hObject,handles);

=========

 hold on

    scatter3(cntr1,cntr2,cntr3);

    xlabel(label1); ylabel(label2); zlabel(label3);

    title('Visualisasi Custer Terhadap 3 Variabel')

    

    hold off

    

    rotate3d(handles.axes3,'on');

Tidak ada komentar:

Posting Komentar