Minggu, 21 Juli 2019
KMEANS EXAMPLE
clc
clear all
close all
%% Generate Points
Sigma = [0.5 0.05; 0.05 0.5];
f1 = mvnrnd([0.5 0] ,Sigma,100);
f2 = mvnrnd([0.5 0.5],Sigma,100);
f3 = mvnrnd([0.5 1] ,Sigma,100);
f4 = mvnrnd([0.5 1.5],Sigma,100);
F = [f1;f2;f3;f4];
%% K-means
K = 8; % Cluster Numbers
KMI = 40; % K-means Iteration
CENTS = F( ceil(rand(K,1)*size(F,1)) ,:); % Cluster Centers
DAL = zeros(size(F,1),K+2); % Distances and Labels
CV = '+r+b+c+m+k+yorobocomokoysrsbscsmsksy'; % Color Vector
for n = 1:KMI
for i = 1:size(F,1)
for j = 1:K
DAL(i,j) = norm(F(i,:) - CENTS(j,:));
end
[Distance CN] = min(DAL(i,1:K)); % 1:K are Distance from Cluster Centers 1:K
DAL(i,K+1) = CN; % K+1 is Cluster Label
DAL(i,K+2) = Distance; % K+2 is Minimum Distance
end
for i = 1:K
A = (DAL(:,K+1) == i); % Cluster K Points
CENTS(i,:) = mean(F(A,:)); % New Cluster Centers
if sum(isnan(CENTS(:))) ~= 0 % If CENTS(i,:) Is Nan Then Replace It With Random Point
NC = find(isnan(CENTS(:,1)) == 1); % Find Nan Centers
for Ind = 1:size(NC,1)
CENTS(NC(Ind),:) = F(randi(size(F,1)),:);
end
end
end
%% Plot
clf
figure(1)
hold on
for i = 1:K
PT = F(DAL(:,K+1) == i,:); % Find points of each cluster
plot(PT(:,1),PT(:,2),CV(2*i-1:2*i),'LineWidth',2); % Plot points with determined color and shape
plot(CENTS(:,1),CENTS(:,2),'*k','LineWidth',7); % Plot cluster centers
end
hold off
grid on
pause(0.1)
end
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar